
A Distributed Multiagent Workflow System

César A. Maŕın and Ramón F. Brena

Centro de Sistemas Inteligentes
Tecnológico de Monterrey, Campus Monterrey

Eugenio Garza Sada 2501
C.P. 64849. Monterrey, Mexico

{cesarmp, ramon.brena}@itesm.mx

Abstract. The decentralized and distributed nature of workflow in or-
ganizations demands for support from decentralized and distributed com-
putational systems. However, most conventional workflow applications
use centralized architectures. Agent technology seems to be an adequate
approach for supporting distributed systems. We have extended the ca-
pacities of a multiagent system for knowledge and information distri-
bution in such a way that it can handle general workflow processes in
a decentralized way. A working prototype is reported, and quantitative
experiments have been conducted to show that the distributed workflow
process flow control makes possible better scalability than the centralized
counterpart.

1 Introduction

Within enterprises, streamlining processes have led to the implementation of pa-
perless document circulation by means of workflow management systems (WfMS)
[1, 2]. They are today a standard component of many enterprise-wide information
systems and their value is widely acknowledged.

Within commercial and industrial domains, the business process execution
and the process flow control are performed in a decentralized way because or-
ganizations are physically and often logically distributed. In other words, there
is no central entity orchestrating each activity composing the whole business
process. This decentralized and distributed nature of workflow in organizations
demands for support from decentralized and distributed computational systems.
However, most conventional workflow applications use centralized architectures.

In this paper we present an extension of an Information and Knowledge
distribution system [3–5], which is an agent-based information system aimed to
distribute the right piece of knowledge to the right person within different parts
of an organization. In fact, distributing knowledge and information items could
be thought of as a restricted kind of workflow, as it just comprises a document
generation and its distribution, ending with the document reception by a final
user. But if, for instance a document needs to pass through authorization in order
to be distributed, then a more complex workflow is needed, and even this simple
task is beyond the basic version of our knowledge distribution system. So, we
enhanced our knowledge distribution system with general workflow capabilities.

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 79-88

This paper structure is as follows: After this introduction, we present some
background about our knowledge distribution multiagent system. Then, in sec-
tion 3 we present our proposal. In section 4 a working prototype is presented,
which is validated experimentally in section 5. Then, we compare our work with
others in section 6, followed by a conclusion.

2 Background - Our System Architecture

Fig. 1. Knowledge distribution system architecture.

Our workflow system is an extension of an information distribution system
[6], which is based on a multiagent architecture shown in Fig. 1. It comprises
some types of agents which appear in the mentioned figure but from which we
are going to explain just those agents which are important for the work we are
presenting:

Site Agent. This agent, works like a network router; it receives messages
from any agent and distributes the information to the proper users under its
site or domain. The distribution is made by first finding the corresponding users
located in conceptual hierarchies. These hierarchies may represent organizational
departments, interest areas, work groups, etc. Each Site Agent keeps in touch
with others Site Agents so that they all together make a network of agents for
information distribution.

Personal Agent. Each user may have one personal agent that filters the
information addressed to the user and shows it through a web browser, sends
him/her an e-mail or a message by a SMS service.

3 The Proposed Architecture

In our architecture, we are going to take the “personal agent” of JITIK as
the basic workflow executers. The proposed solution for decentralized workflow
process management consists in breaking down the workflow process execution

80 C. Marin, R. Brena

and the process flow control into small execution units handled by intelligent
agents, and allowing the agents to reflect the organizational structure and the
way processes are controlled and executed, i.e., distributed and decentralized.

For this purpose, two agent types are required: a new agent type named
Registry Agent for holding process descriptions, keeping track of all the run-
ning processes at every moment and creating process instances on demand; and
the existing Personal Agent for assisting its user/worker to perform his/her as-
signed tasks. In the end, Personal Agents are the actual organizational processes
orchestrators in a distribution and decentralized fashion.

Once all agents (one Registry Agent and one Personal Agent for each user
participating in a process) are up and running, the Registry Agent receives a
process description [7] as input and segments it into atomic task descriptions.
A task description is composed by the process identifier this task belongs to;
the information to be handled which can be a link to a document; the assigned
Personal Agent referenced by its user description in terms of the organization,
i.e., the Personal Agent of the user in department D and position P ; a list of
tasks to be enabled right after this task finishes its execution containing the
corresponding Personal Agent reference; the join and split operations to apply;
and the number of flows that converge to this task. After process description
segmentation, the Registry Agent distributes each task description to the corre-
sponding Personal Agent executor. This way, all Personal Agents know what to
do in advance when a task of a process instance is running, resembling the way
an organization works. It is assumed that each task is assigned to only one user,
i.e., a unique Personal Agent.

3.1 Agent Communication

Since all tasks are distributed, Personal Agents need to send messages among
them in order to enable tasks of the same process instance. In Petri Nets, a
token is a marker that specifies in which part of the net is occurring the actual
processing. In our system, a token is an agent message which contains a process
ID, an instance ID and a task ID over which the message recipient must operate.

A task is enabled when its Personal Agent receives the necessary tokens for
task enabling according to a join operation (AND, OR, XOR), e.g. let us assume
that in a process, tasks ta, tb, tc and td exist and are owned by Personal Agents
PAa, PAb, PAc and PAd respectively, and ta, tb and tc are direct predecessors of
td which in turn synchronizes the three incoming flows, i.e., PAd must perform
an AND-join operation in order to enable td. Therefore, right after PAa, PAb

and PAc finish its task execution, each of them send a token to PAd. And only
when all three incoming tokens are received task td is enabled and ready for
execution. A sequence diagram showing this token passing is illustrated in Fig.
2(a).

When a Personal Agent finishes a task execution and is about to enable the
successive tasks in the process flow, it sends a single enabling token for each
successor task to its owner Personal Agent according to a split operation (AND,
OR, XOR), e.g., let us assume that in a process, tasks tm, tn, to and tp exist

A Distributed Multiagent Workflow System 81

(a) AND-join operation.

(b) XOR-split operation.

Fig. 2. Enabling workflow tasks.

and are owned by Personal Agents PAm, PAn, PAo and PAp respectively, and
tn, to and tp are direct successors of tm which in turn selects one of the three
outcoming flows, i.e., PAm must perform an XOR-split operation in order to
enable only one of tn, to or tp. A sequence diagram showing this token passing
is illustrated in Fig. 2(a), here, task to was selected and thus the token was sent
to PAo.

A token can be sent by the Registry Agent or a Personal Agent. When the
Registry Agent enables one or more tasks is because a process instance has just
been created by it and the first tasks in such instance process are being enabled.
This is the only case in which the Registry Agent is involved in the process flow
control. When a Personal Agent enables one or more tasks is because it just
finished the execution of one of its tasks. Notice that several tokens can be sent
at a time by each Personal Agent for different process instances. Moreover, when
a task status changes (e.g. from enabled to in-execution), the task owner sends
a message to the Registry Agent to inform the event. This is for monitoring
purpose and will not be explained here.

4 Prototype

The developed prototype for distributed and decentralized workflow process ex-
ecution consists in several software layers shown in Fig. 3.

82 C. Marin, R. Brena

Fig. 3. Agent-based workflow software layers.

Agent Platform. The chosen agent platform for developing and executing
our system agents was JADE because of its robustness [8]. Additionally, we used
the JADE ACL messaging mechanism for agent communication.

Data Access. This layer is used for information access support. It allows
agents to acquire information about their user or search other users’ Personal
Agents.

Workflow. Workflow process descriptions [7] taken as system input, are
parsed and then segmented into atomic task description. This way, Personal
Agents are able to know their assigned activities in advance and perform their
tasks when a process instance is generated. This layer also works as information
provider to the upper layer as explained below.

Agent Communication. On top of the Workflow layer the communication
components were developed. These components are used for translating task
descriptions into Tasks, as objects, so that Personal Agent can manage them.
Based on these Tasks, Tokens can be generated and passed among agents for
workflow enactment.

System Agents. Personal Agents, a single Registry Agent (and other system
agent) are running constantly in the platform; they acquire information about
users, such as who and where is his/her Personal Agent, through the Data Access
layer; they rely on the Agent Communication layer for process instance creation,
token passing and task enabling; and furthermore, the Registry Agent creates
process instances and keeps track of all active processes.

5 Experiments

Since it is well known that a distributed application (e.g. using agents) diminishes
the workload among its element while increases the communication, the objective
of the experiments is to demonstrate that the proposed decentralized execution
of workflow processes can be implemented (concept proof) and that performs
better than a centralized approach. Thus, the performance of both approaches
were compared using the elapsed time for executing certain number of process
instances at a time.

Three processes were designed for this purpose, each of them representing
some basic workflow patterns [9]. It was decided to test using the basic workflow

A Distributed Multiagent Workflow System 83

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16 18 20

E
la

ps
ed

 s
ec

on
ds

Number of process instances at a time

Decentralized execution
Centralized execution

(a) Tasks in sequence

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 2 4 6 8 10 12 14 16 18 20

E
la

ps
ed

 s
ec

on
ds

Number of process instances at a time

Decentralized execution
Centralized execution

(b) AND split and join

Fig. 4. Comparison between the centralized and the decentralized versions of workflow

patterns since when combined they form complex workflow processes. The first
testing process represents the sequence pattern which, according to its nature,
was combined with no other workflow pattern. And the second testing process
represents the combination of the parallel split and the synchronization workflow
patterns since they match, i.e., they are the AND split and joint.

An experiment consisted in the creation of an increasing number of process
instances at a time, i.e., first one process instance, then 2, then 3 and so on up
to 20 instances at a time. For each block of instances, the seconds elapsed from
the first instance creation until the last task in terminate of the last process
instance was measured. Thus, at certain moment there were several process
instances running at a time.

The execution of a task consisted on waiting certain amount of simulation
cycles. All tasks were standarized to 5 cycles and each cycle lasts 10 milliseconds,
which means that the total amount of time for executing a task is 50 milliseconds.
Notice that there was no central control on the passing time, i.e., each agent had
to decide how much time had elapsed by its own.

For resembling the centralized approach, all tasks of the testing processes
were assigned to one single agent who had to perform the whole work by itself.
There were other threads along with the centralized version in order to allow all
agents to operate under the same conditions.

For simulating the distributed approach, all tasks of the testing processes
were completely distributed, i.e., one agent were assigned to perform only one
task.

For testing our system with respect to sequential processes, a simple process
were defined in which 42 tasks is sequence were put. In the decentralized case,
each task was assigned to one single Personal Agent. And in the centralized case,
each tasks was assigned to a single Personal Agent. For the centralized case, when
processing a single instance, the elapsed time was of 96.275 seconds and for 20
instances the elapsed time was of 1778.313 seconds. For the decentralized case
the elapsed time was of 79.811 seconds for 1 process instance and 434.517 seconds

84 C. Marin, R. Brena

for 20 instances. As can be appreciated in Fig. 4(a) even for 1 process instance,
the decentralized approach overcomes the centralized one.

In other experiments, we tested our system with respect to parallel split
and synchronization, The process used for this test consisted of a single task
(thread) that splits into 40 different thread composed by one task each. After-
wards, all threads converges into another single one. In the centralized case, the
duration of one instance execution was 102.411 seconds and for 20 instances it
lasted 4068.367 seconds, i.e., over an hour for executing 20 instances. And the
decentralized case lasted 47.31 seconds for one instance and 523.287 seconds for
executing 20 instances of the same process. Figure 4(b) shows a comparison be-
tween these two approaches for workflow process execution. It is clear that a
decentralized approach overcomes a centralized one in execution time.

The results presented in this chapter demonstrate that the distributed and
decentralized execution of workflow processes outperforms a centralized archi-
tecture for the basic workflow patterns. It is clear that these results extrapolate
to more complex patterns, which are combinations of the basic ones.

We think these results are clear indication that the decentralized architec-
ture has advantages in terms of scalability, which is a very important issue for
large organizations. Indeed, in the experiments we can see that some of the
performance curves for the centralized version grew faster than linear.

The reason why the decentralized architecture outperforms the centralized
approach, in terms of scalability, is that in the latter we are increasing the number
of process instances over one single thread of execution (one Personal Agent),
eventually saturating it; this single thread becomes a bottleneck and produces
an increasing time overhead. That explains why, in the graphs presented, with
an increasing number of instances, time increases not linearly, but worse (we did
not investigate whether in the centralized case time was polynomial, exponential
or other, but clearly is not linear).

6 Related Work

In general, other agent-based workflow architectures [10–16], emphasize the ne-
gotiation aspect of multiagent systems and their distributed nature. Thus, they
proposed a distributed workflow system as well. However, they centralize the
workflow process execution in one single agent (called Workflow Agent or Trig-
ger Agent). In section 5, a comparison between a decentralized process execution
and a centralized one was presented. Results demonstrate that a decentralized
workflow process execution is better than a centralized one in terms of scalabil-
ity. In addition, in those architecture there are several agent instantiation at run
time under no control. In other words, they assume an environment with unlim-
ited resource while in real environments that cannot be assumed. Our system
does not makes that assumption since all agents are predefined to run at system
start up. Snd besides, the required quantity of agents in our system is linear to
the quantity of workers in the organization.

A Distributed Multiagent Workflow System 85

Compared to agent-enhanced approaches [17–19] our system architecture al-
lows to automate behavior, i.e. agents can execute tasks on its own without
human involvement, agents react to its environment, agents can adjust them-
selves, e.g., they can create new tasks or new routing depending on the circum-
stances, and finally, agents have high level features such as learning, negotiation,
and planning [20]. In other words, an agent-based application has more benefits
than an agent-enhanced workflow application since in the agent-enhanced work-
flow application agents’ behavior is limited to the possibilities of the underlying
WfMS.

Other architectures have been proposed for distributed workflow engines [21],
distributed components of workflow patterns [22], and a distributed architecture
in which components get communicated via ontological messages [23]. However,
in traditional distributed system, all decisions, coordination and cooperation are
hard-coded at design time. Additionally, the elements of these systems share a
common goal. These are remarkable differences between this kind of systems and
multiagent systems [24] since in the latter, the agents may not share common
objectives and therefore they must act strategically, so that they can achieve the
outcome they most prefer. In addition, agents are assumed to make decisions
about what to do at run time (acting autonomously) while traditional distributed
systems cannot.

7 Conclusions

We presented in this paper a multiagent-based architecture that supports decen-
tralized workflow processes execution. The proposed solution for this purpose
consisted in breaking down the workflow process execution and the process flow
control into small execution units handled by distributed agents.

A prototype was developed in order to prove that the proposed solution for
decentralized workflow process execution performs better than a centralized ap-
proach. Experiments were setup combining some of the workflow patterns and
for different number of process instances. The results were, in the two experi-
ments, conclusive since the decentralized approach outperforms the centralized
version. These results prove that a decentralized approach for workflow process
execution is more scalable than a centralized one.

As future work, we plan to include support for the remaining and more
complex of the workflow patterns [9], allow agents to perform automated tasks
without human intervention, e.g., when a task requires to incorporate informa-
tion automaticaly from particular information sources or alarms to be triggering
because of something happened in a legacy application.

Also, our decentralized proposal makes it possible to start a process execution
and at some part continue it within another organization. This would be inter-
organization workflow, which has great economic potential.

86 C. Marin, R. Brena

Acknowledgements

This work was supported by the Monterrey Tech’s Research Grant CAT011.

References

1. Koulopoulos, T.M.: The Workflow Imperative. Van Nostrand Rainhold, New York,
USA (1995)

2. Simon, A.R., Marion, W.: Workgroup Computing. Workflow, Groupware and Mes-
saging. McGraw-Hill, New york, USA (1996)

3. Aguirre, J., Brena, R., Cantu, F.: Multiagent-based knowledge networks. Expert
Systems with Applications 20 (2001) 65–75

4. Brena, R., Aguirre, J.L., Trevino, A.C.: Just-in-time information and knowledge:
Agent technology for km bussiness process. In: Proceedings of the 2001 IEEE
Conference on Systems, Man and Cybernetics, Tucson, Arizona, Octubre 7-10,
IEEE Press (2001)

5. Ceballos, H., Brena, R.: Combining local and global access to ontologies in a
multiagent system. Journal of Advanced Computational Intelligence and Intelligent
Informatics 9 (2005) 5–12

6. Brena, R., Aguirre, J.L., Treviño, A.C.: Just-in-Time Information and Knowledge:
Agent Technology for KM Bussines Process. In: Proceedings of the 2001 IEEE
Systems, Man, and Cybernetics Conference, Tucson, USA (2001)

7. P., C.A.M.: Decentralized Execution of Workflow Processes Using a Multiagent
Architecture. Msc. in intelligent systems, Tecnológico de Monterrey, Campus Mon-
terrey, Monterrey, México (2005)

8. Bellifemine, F., Poggi, A., Rimassa, G.: Jade - a fipa-compliant agent framework.
In: Proceedings of PAAM99, London. (1999)

9. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Pat-
ters. Technical Report FIT-TR-2002-02, Queensland University of Technology,
Brisbane, Australia (2002) http://is.tm.tue.nl/research/patterns/.

10. Chang, J.W., Scott, C.T.: Agent-based Workflow: TRP Support Environment. In:
Fifth International World Wide Web Conference, Paris, France (1996)

11. Jennings, N., Faratin, P., Johnson, M., Brien, P., Wiegand, M.: Using Intelli-
gent Agents to Manage Business Processes. In: First International Conference
on The Practical Application of Intelligent Agents and Multi-Agent Technology
(PAAM96), London, UK (1996) 345–360

12. Manmin, X., Huaicheng, L.: Cooperative Software Agents for Workflow Man-
agement System. In: Fifth Asia-Pacific Conference on Communications and
Fourth Optoelectronics and Communications Conference (APCC/OECC’99), Bei-
jin, China (1999) 1063–1067

13. Yunlong, Z., Hongxin, L., Jinsong, X., Hongtao, W.: The Design of Cooperative
Workflow Management Model Based on Agent. In: 31st International Conference
on Technology of Object-Oriented Language and Systems, Nanjing, China (1999)

14. Gou, H., Huang, B., Liu, W., Ren, S., Li, Y.: An Agent-based Approach for
Workflow Management. In: IEEE International Conference on Systems, Man, and
Cybernetics, Nashville, USA (2000) 292–297

15. Botha, R.A., Eloff, J.H.P.: Access Control in Document-centric Workflow Systems
– An Agent-based Approach. Computers & Security 20 (2001) 525–532

A Distributed Multiagent Workflow System 87

16. Stormer, H.: A Flexible Agent-based Workflow System. In: The 5th International
Conference on Autonomous Agents, Montreal, Canada (2001)

17. Odgers, B., Shepherdson, J., Thompson, S.: Distributed Workflow Co-ordination
by Proactive Software Agents. In: Intelligent Workflow and Process Management.
The New Frontier for AI in Business IJCAI-99 Workshop, Stockholm, Sweden
(1999)

18. Dogac, A., Tambag, Y., Tumer, A., Ezbiderli, M., Tatbul, N., Hamali, N., Icdem,
C., Beeri, C.: A Workflow System through Cooperating Agents for Control and
Document Flow over the Internet. In: CooplS ’02: Proceedings of the 7th Inter-
national Conference on Cooperative Information Systems, London, UK, Springer-
Verlag (2000) 138–143

19. Hulaas, J.G., Stormer, H., Schonhoff, M.: ANAISoft: An Agent-based Architec-
ture for Distributed Market-based Workflow Management. In: Software Agents
and Workflows for Systems Interoperability workshop of the Sixth International
Conference on CSCW in Design, London, Canada (2001)

20. Yan, Y., Maamar, Z., Shen, W.: Integration of Workflow and Agent Technology for
Business Process Management. In: The Sixth International Conference on CSCW
in Design, London, Canada (2001)

21. Ceri, S., Grefen, P., Sáchez, G.: WIDE - A Distributed Architecture for Workflow
Management. In: IEEE 7th International Workshop on Research Issues in Data
Engineering (RIDE ’97) High Performance Database Management for Large-Scale
Applications, Birmingham, UK (1997)

22. Ferreira, J.P., Ferreira, H., Toscano, C.: Distributed Workflow Management En-
actment Engine. In: International Conference on Industrial Engineering and Pro-
duction Management, Porto, Portugal (2003)

23. Blake, M.B.: Agent-Based Communication for Distributed Workflow Management
using Jini Technologies. International Journal on Artificial Intelligence Tools 12

(2003)
24. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and sons,

LTD, Baffins Lane, England (2001)

88 C. Marin, R. Brena

